
Properties of Summations

 𝑎ଵ𝑥 =
𝑎ଵ(1 − 𝑟)

1 − 𝑟

ୀ

 𝑐𝑎 + 𝑏

ୀଵ

= 𝑐 𝑎 + 𝑏

ୀଵ

ୀଵ

Arithmetic ∑ 𝑘 =
(ାଵ)

ଶ

ୀଵ

Geometric

 𝑥 = 1 + 𝑥 + 𝑥ଶ =
𝑥ାଵ − 1

𝑥 − 1

ୀ

 𝑥 =
1

1 − 𝑥

ஶ

ୀ

, |𝑥| < 1

Harmonic

𝐻 = 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
=

1

𝑘

ୀଵ

Asymptotic Notation
𝑂(𝑔) = {𝑓 |∃𝑐, 𝑛 > 0

∀𝑛 ≥ 𝑛, 0 ≤ 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)}
Ω(𝑔) = {𝑓 |∃𝑐, 𝑛 > 0

∀𝑛 ≥ 𝑛, 0 ≤ 𝑐 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛)}
(𝑛) ∈ 𝛩(𝑔) ⇔ ∃𝑐_1, 𝑐_2, 𝑛_0

∀𝑛 ≥ 𝑛_0,
0 ≤ 𝑐ଵ ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐ଶ ⋅ 𝑔(𝑛)

𝑓 ∈ 𝑂(𝑔) ⇒ 𝑔 + 𝑓 ∈ Θ(𝑔)
𝑘 ⋅ 𝑛 ∈ Θ(𝑛), 𝑘 > 0
𝑓 ∈ 𝑂(𝑔) ⇔ 𝑔 ∈ Ω(𝑓)

𝑓 ∈ Θ(𝑔) ⇔ 𝑓 ∈ 𝑂(𝑔) ∧ 𝑓 ∈ Ω(𝑔)
Logarithm Laws

log 𝑏 = 1 log(1) = 0
log(𝑎𝑏) = log(𝑎) + log (𝑏)

𝑏୪୭್ ௬ = 𝑦

log ൬
1

𝑎
൰ = − log(𝑎)

log(𝑀) = 𝑘 log 𝑀
log(𝑏) = 𝑘

𝑥 = log(𝑎) → 𝑏௫ = 𝑎
log 𝑥 < 𝑥 ∀𝑥 > 0

Recurrences - Master Method
Case 1: f Asymptotically Smaller

𝑇(𝑛) ∈ Θ൫𝑛୪್()൯
⇒ 𝑓(𝑛) ∈ O൫𝑛୪್ ିఢ൯, 𝜖 > 0

Case 2: f Asymptotically Same
𝑇(𝑛) ∈ Θ൫𝑛୪୭ౘ lg 𝑛൯
⇒ 𝑓(𝑛) ∈ Θ(𝑛୪୭ౘ)

Case 3: f Asymptotically Larger
𝑇(𝑛) ∈ Θ൫𝑓(𝑛)൯

⇒ 𝑓(𝑛) ∈ Θ(𝑛୪್ ାఢ)
If 𝑎𝑓 ቀ

ቁ ≤ 𝑐𝑓(𝑛) 𝑓𝑜𝑟 𝑐 < 1

Case2+: f larger, not asymptoti 𝑓 ∈

൫𝑛୪್ lg 𝑛൯ → Θ(𝑛୪್ lgାଵ 𝑛)
Substitution Method

Guess solution, prove by induction
𝑇(𝑛) =

ቊ
2, 𝑛 = 2

2𝑇 ቀ

ଶ
ቁ + 𝑛, 𝑛 = 2 ∀ 𝑘 > 1

=> 𝑇(𝑛) = 𝑛 lg 𝑛, 𝑛 = 2 , 𝑘 ≥ 1
Assume 𝑇 ቀ

ଶ
ቁ =

ଶ
lg ቀ

ଶ
ቁ

Prove for 𝑛 = 2

𝑇(𝑛) = 2𝑇 ቀ
𝑛

2
ቁ + 𝑛

= 2 ቀ
𝑛

2
ቁ lg ቀ

𝑛

2
ቁ + 𝑛

= 𝑛(lg 𝑛 − lg 2) + 2 = 𝑛 lg 𝑛

Graph Data Structures
Adjacency List: + sparse graphs
Space Θ(𝑉 + ∑ 𝑜𝑢𝑡𝐷𝑒𝑔(𝑣))௩∈ீ.

= Θ(𝑉 + 𝐸)
Time isAdjacentTo O(𝑉)
Time hasEdge Θ(1)
Adjacency Matrix: + dense graphs
Space Θ(𝑉ଶ)
Time isAdjacentTo 𝑂(1)

Undirected Graphs
Must not have any self-loops.

|𝐸| ≤ |𝑉|ଶ
Path: Length 𝑘 from 𝑣 → 𝑣
⟨𝑣, ⋯ , 𝑣⟩, (𝑣ିଵ, 𝑣) ∈ 𝐺. 𝐸

∀𝑖 ∈ {1, ⋯ , 𝑘}
𝑢 is reachable from 𝑣 if ∃ path
from 𝑢 to 𝑣
Simple Path if all vertices distinct
Path is Cycle if 𝑣 = 𝑣 ∧ 𝑘 ≥ 1
Simple Cycle If all v and e unique
Connected if every vertex is
reachable from all other vertices

|𝑉| − 1 ≤ |𝐸| ≤
𝑛(𝑛 − 1)

2

Forest if it is acyclic
0 ≤ |𝐸| ≤ |𝑉| − 1

Tree if it is a forest with one
connected component

|𝐸| = |𝑉| − 1
Directed Graphs

Strongly Connected Every two
vertices reachable
𝐺ᇱ = (𝑉ᇱ, 𝐸ᇱ) Subgraph if

𝑉ᇱ ⊆ 𝑉, 𝐸ᇱ ⊆ 𝐸
𝐺ᇱ Spanning Subgraph if 𝑉ᇱ = 𝑉

Breadth-First Search 𝑂(𝑉 + 𝐸)
Unwt Single-Source Shortest Path
bfs(G, v)
 for u in G.V – {v}:
 u.d = ∞; u.color=WHITE
 v.d = 0; v.color = GREY
 Q = {v} // Uses a Queue.
 while Q.size != 0
 curr = Q.dequeue()
 for u in G.adj[curr]
 if u.color == WHITE
 u.d = curr.d + 1
 u.color = GREY
 Q.enqueue(u)
 curr.color = BLACK // done
Θ(V + 1 + 𝑉 × 1 + 𝑑𝑒𝑔(𝑉) × 1)

= Θ(𝑉 + 𝐸)
Depth-First Search O(V+E)

Not guaranteed shortest path.
dfs(G)
 t=0
 for u in G.V: {u.c = WH; u.pi=-1}
 for u in G.V:
 if u.color = white {visit(G, u)}
visit(G, v)
 v.color=grey; t++; v.disc=t
 for u in G.adj[v]
 if u.color = white:
 u.pi = v
 visit(G, u)}

v.color=black; t++; v.fin = t

Directed Acyclic Graphs
TopoSort: Linear ordering of 𝑉 s.t.
if (𝑢, 𝑣) ∈ 𝐸 then u before v.
All vertices with directed edges to
v appear before v.
Topo-sort(G) 𝑂(𝑉 + 𝐸)
 Init empty linked list of vertices
 Call DFS(G)
 As each vertex finished, add to
front of list
 Return list of vertices in
descending order of DFS finishing
time.

Prim’s Algorithm
Finds MST of weighted, undirected
graph using least-weight edges.
Base Case: T if tree is spanning
Recursive 𝑇 ∪ {(𝑢, 𝑣)} where (u,v)
is the least-weight edge leaving T
𝑂(𝑉 × 𝑇௫௧ି + 𝐸 × 𝑇ௗି௬)

Array 𝑂(𝑉ଶ)
Fibonacci Heap 𝑂(𝐸 + 𝑉 lg 𝑉)
Binary Heap 𝑂(𝐸 + lg 𝑉)
mst-prim(G, w, r)
 for each v in V {v.k = ∞, v.𝜋=-1}
 r.key = 0
 Q = G.V
 while Q.size() != 0
 u = Q.remove-min()
 for each v in G.adj[v]
 if v in Q and q(u,v) < v.key
 v.key = w(u,v)
 // decrease the key
 v. 𝜋 = u
Kruskal’s Algorithm Greedy 𝐸 lg 𝐸
Finds minimum spanning forest. If
graph is connected, finds MST.
Create graph with |V| forests.
Add least-weighted edge
connecting any two forests
together. Terminate when T is
connected.
Uses a disjoint forest data
structure.
Make-set O(1)
Find-set O(1) normally, O(lg n)
Union(x, y) runs in almost O(1)
mst-kruskal(G, w) Θ(𝐸 lg 𝐸)
 𝑇 = {}
 For 𝑣 ∈ 𝐺. 𝑉 { make-set(v) }
 Sort 𝐺. 𝐸 in non-decreasing
 order by weight
 for (𝑢, 𝑣) ∈ 𝐺. 𝐸 (sorted)
 if find-set(u) ≠ find-set(v)
 𝑇 = 𝑇 ∪ {(𝑢, 𝑣)}
 union(u,v)
 return T

Dijkstra’s Algorithm Greedy
Single-Source Shortest Path

Finds shortest path tree of
weighted graph G with no
negative weight edges.

𝛩(𝑉 × 𝑇ି + 𝐸 × 𝑇ௗି௬)
Array 𝑂(𝑉ଶ + 𝐸 ∗ 1) = 𝑂(𝑉ଶ)
Binary Heap 𝑂(𝑉 𝑙𝑔 𝑉 + 𝐸 𝑙𝑔 𝑉)
Fibonacci Heap 𝑂(𝐸 + 𝑉 𝑙𝑔 𝑉)
Not guaranteed for graphs with
negative weight edges, as it will
not re-explore paths (via newly
explored vertices).
Let A=source, B, C.
e(A,B)=5, e(A,C)=6, e(C,B)=-3
(1) Set d(A)=0 as source
(2) Set d(B)=5 d(B) > d(A) + w(A,B)
(3) Set d(C)=6 d(C) > d(A) + w(A,B)
->no check d(B)=d(C)+w(C,B)=3
Dijkstra(G, weight, source):
 Init-single-source(G, s)
 Visited = {}; Q = G.V;
 While Q.size != 0
 u = Q.extract-min()
 visited.add(u)
 for 𝑣 ∈ G.adj[u] relax(u, v, w)
init-single-source(G, s)
 for 𝑣 ∈ G.V {v.d=∞, v.𝜋=NIL}
 s.d = 0
relax(u, v, w):
 if v.d > u.d + w(u, v)
 v.d = u.d + w(u,v); v.𝜋 = u

Bellman Ford
Single-Source Shortest Path in
Weighted Directed Graph
Bellman-Ford(G, w, s)
 init-single-source(G, s)
 // Relax each edge |V|-1 times
 For (𝑢, 𝑣) ∈ 𝐺. 𝐸
 If v.d > u.d + w(u,v)
 return False
 // Negative wt cycle
 return True

Floyd Warshall [Dynamic]
All-Pairs Shortest Paths 𝑂(|𝑉|ଷ)

Number vertices from 0..|V|-1
Let 𝑠𝑝(𝑖, 𝑗, 𝑘) be the shortest path
from 𝑖 → 𝑗 using k
Floyd-warshall
 N = W.rows 𝐷() = 𝑊
 For k = 1..n
 Let 𝐷() = (𝑑

()
) be nxn mat

 For i=1..n { for j=1..n {
 𝑑

()
= min (d୧୨

୩ିଵ, 𝑑
ିଵ + 𝑑

ିଵ
 }}
return 𝐷() – 𝑇(𝑛) ∈ Θ(𝑛ଷ)

Greedy Problems
Greedy problems exist when
problem has optimal substructure
and greedy choice property.
Solve problems by making greedy
(locally optimal) choice and solving
only chosen sub-problem.
Greedy Choice Pr Given problem,
know which sub-problem’s
solution will yield optimal solution
without having to solve all other
sub-problems

Dynamic Programming
Efficiency from avoiding re-

computing sub-problems
May apply to problems with
optimal substructure in which
optimal solution can express as
optimal solutions to subproblems.
Bottom-Up Solve base case first
Memoisation Solve top-down like
recursive algo – worse constant fs
𝐿𝐶𝑆(⟨⟩, 𝑆ଶ) = 𝐿𝐶𝑆(𝑆ଵ, ⟨⟩) = 0
LCS(𝑆ଵ.X, 𝑆ଶ.X)= LCS(𝑆ଵ, 𝑆ଶ)+1
LCS(𝑆ଵ.X, 𝑆ଶ.Y)=MAX(
LCS(𝑆ଵ, 𝑆ଶ.Y), LCS(𝑆ଵ.X, 𝑆ଶ)), 𝑋 ≠ 𝑌

Amortised - Aggregate Method
Argue that a series of 𝑛 operations
is completed in 𝑇(𝑛) – each

operation has amortised cost ்
()

 .

Amortised – Accounting Method
Focus on data structure operation
1 Calculate the actual cost 𝑐 of
each type of operation
2 Assign an amortised cost 𝑐పෝ to
each operation
For any sequence of operations,
amortised cost must be an upper
bound on actual cost

 𝑐పෝ

ୀଵ

≥ 𝑐

ୀଵ

 Credit stored is difference
between amortised cost and
actual cost.

Potential Method
1 Determine the cost of each
operation
2 Define a potential function on
data structure
Amortised cost of an operation:

𝑐పෝ = 𝑐 + ൫Φ(𝐷) − Φ(𝐷ିଵ)൯
For any sequence of operations,
amortised cost must be an upper
bound on actual cost.
Amortised cost = sum of ci
Obliged to show Φ(𝐷) ≥ Φ(𝐷)
True if Φ(𝐷) = 0, Φ(𝐷) ≥ 0

Push / Pop / Multipop
Actual: 1, 1, min(|S|, k)
ΔΦ 1, -1, -k’

Amortised: 2, 0, 0

Complexity Theory - Polynomial
P: Class of problems that can be
solved in polynomial time on a
serial random-access machine.
Same as the class of problems that
can be solved in polynomial time
on an abstract Turing machine,
and the class of problems that can
be solved in polynomial time on a
parallel compute where the
number of processors grow
polynomially with input size.
Closed under addition,
multiplication, and composition:
Addition: Run one polynomial
time algorithm after another is still
𝑂(𝑛)
Multiplication: Run a polynomial
time algorithm a polynomial
number of times is still polynomial
time
Composition: Feeding the output
of a polynomial time algorithm
(which is at most polynomial in
size) to another polynomial time
algorithm is still polynomial.
Alternatively, run a polynomial-
time algorithm on an input of
polynomial size.

Complexity Theory – NP
Non-Deterministically Polynomial
Set of concrete problems for
which a solution (certificate) can
be checked/verified in polynomial
time.
Problems for which we can’t even
verify a solution in polynomial
time are unlikely to have a
polynomial time solution
Trivially, we know that 𝑃 ⊂ 𝑁𝑃
NP Hard A concrete decision
problem 𝐵 is NP-hard when every
problem 𝐴 ∈ 𝑁𝑃 is polynomial-
time reducible to 𝐵
NP Complete It is NP-H and its
solution can be verified in
polynomial time

Complexity Theory – Classes
Focus on concrete decision probs:
Decision Output 1 or 0 as sol’n
Optimisation problem usually
have closely related decision
problems.
If the optimisation problem is
easy, the related decision
problem is also easy.
Abstract: Problem that takes any
input and maps to a solution.
Binary relation as there may be
multiple solutions for a given
problem instance.
Concrete: Problem that has set of
binary strings as input.
Encodings: Translate abstract
problems to concrete problems

Reductions
Let X be a problem. If you can
show that a known NP-Hard
problem is reducible to X then X is
NPH.
Reduce HAM-CYCLE to TSP
Hamiltonian Cycle: Simple path
through unweighted graph
containing very vertex, starting,
and ending at the same vertex.
Use TSP to solve HAM by set
weight to 0 if edge exists, else 1.

For a problem to be NP Hard, we
must show that every problem in
NP is polynomial-time reducible to
B.
To do this, we can show there
exists a mapping between the
inputs of a known NP-Hard
problem and the problem X
(Reduce Known NPH to X).

For a problem to be NP-Complete,
we must show that it is NP Hard,
and that a certificate (solution) to
the problem can be verified in
polynomial time.

 Master Method – added
the final Θ(…) answer.

 Dynamic Programming –
Check that using max or
min in the right way –
trying to max/min a
particular value.

Pseudocode – populate
the base case first before
computing the further
cases

Return a value

Joe biden

