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Asymptotic Notation 
𝑂(𝑔) = {𝑓 |∃𝑐, 𝑛 > 0 

∀𝑛 ≥ 𝑛, 0 ≤ 𝑓(𝑛) ≤ 𝑐 ⋅ 𝑔(𝑛)} 
Ω(𝑔) = {𝑓 |∃𝑐, 𝑛 > 0 

∀𝑛 ≥ 𝑛, 0 ≤ 𝑐 ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛)} 
(𝑛) ∈ 𝛩(𝑔) ⇔ ∃𝑐_1, 𝑐_2, 𝑛_0 

∀𝑛 ≥ 𝑛_0, 
0 ≤ 𝑐ଵ ⋅ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐ଶ ⋅ 𝑔(𝑛) 

𝑓 ∈ 𝑂(𝑔) ⇒ 𝑔 + 𝑓 ∈ Θ(𝑔) 
𝑘 ⋅ 𝑛 ∈ Θ(𝑛),     𝑘 > 0 
𝑓 ∈ 𝑂(𝑔) ⇔ 𝑔 ∈ Ω(𝑓) 

𝑓 ∈ Θ(𝑔) ⇔ 𝑓 ∈ 𝑂(𝑔) ∧ 𝑓 ∈ Ω(𝑔) 
Logarithm Laws 

log 𝑏 = 1            log(1) = 0 
log(𝑎𝑏) = log(𝑎) + log (𝑏) 

𝑏୪୭್ ௬ = 𝑦 

log ൬
1

𝑎
൰ = − log(𝑎) 

log(𝑀) = 𝑘 log 𝑀 
log(𝑏) = 𝑘 

𝑥 = log(𝑎) → 𝑏௫ = 𝑎 
log 𝑥 < 𝑥   ∀𝑥 > 0 

Recurrences - Master Method 
Case 1: f Asymptotically Smaller 

𝑇(𝑛) ∈ Θ൫𝑛୪್()൯ 
⇒ 𝑓(𝑛) ∈ O൫𝑛୪್ ିఢ൯, 𝜖 > 0 

Case 2: f Asymptotically Same 
𝑇(𝑛) ∈ Θ൫𝑛୪୭ౘ  lg 𝑛൯ 
⇒ 𝑓(𝑛) ∈ Θ(𝑛୪୭ౘ ) 

Case 3: f Asymptotically Larger 
𝑇(𝑛) ∈ Θ൫𝑓(𝑛)൯ 

⇒ 𝑓(𝑛) ∈ Θ(𝑛୪್ ାఢ) 
If 𝑎𝑓 ቀ




ቁ ≤ 𝑐𝑓(𝑛) 𝑓𝑜𝑟 𝑐 < 1 

Case2+: f larger, not asymptoti 𝑓 ∈

൫𝑛୪್  lg 𝑛൯ →  Θ(𝑛୪್  lgାଵ 𝑛) 
Substitution Method 

Guess solution, prove by induction 
𝑇(𝑛) =

ቊ
2,         𝑛 = 2

2𝑇 ቀ


ଶ
ቁ + 𝑛, 𝑛 = 2 ∀ 𝑘 > 1

  

=> 𝑇(𝑛) = 𝑛 lg 𝑛, 𝑛 = 2 , 𝑘 ≥ 1 
Assume 𝑇 ቀ
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Prove for 𝑛 = 2 

𝑇(𝑛) = 2𝑇 ቀ
𝑛

2
ቁ + 𝑛 

= 2 ቀ
𝑛

2
ቁ lg ቀ

𝑛

2
ቁ + 𝑛 

= 𝑛(lg 𝑛 − lg 2) + 2 = 𝑛 lg 𝑛

Graph Data Structures 
Adjacency List: + sparse graphs  
Space Θ(𝑉 + ∑ 𝑜𝑢𝑡𝐷𝑒𝑔(𝑣))௩∈ீ.  

= Θ(𝑉 + 𝐸) 
Time isAdjacentTo O(𝑉) 
Time hasEdge Θ(1) 
Adjacency Matrix: + dense graphs 
Space Θ(𝑉ଶ)  
Time isAdjacentTo 𝑂(1) 

Undirected Graphs 
Must not have any self-loops. 

|𝐸| ≤ |𝑉|ଶ 
Path: Length 𝑘 from 𝑣 → 𝑣 
⟨𝑣, ⋯ , 𝑣⟩, (𝑣ିଵ, 𝑣) ∈ 𝐺. 𝐸 

∀𝑖 ∈ {1, ⋯ , 𝑘} 
𝑢 is reachable from 𝑣 if ∃ path 
from 𝑢 to 𝑣 
Simple Path if all vertices distinct 
Path is Cycle if 𝑣 = 𝑣 ∧ 𝑘 ≥ 1 
Simple Cycle If all v and e unique 
Connected if every vertex is 
reachable from all other vertices 

|𝑉| − 1 ≤ |𝐸| ≤
𝑛(𝑛 − 1)

2
 

Forest if it is acyclic 
0 ≤ |𝐸| ≤ |𝑉| − 1 

Tree if it is a forest with one 
connected component 

|𝐸| = |𝑉| − 1 
Directed Graphs 

Strongly Connected Every two 
vertices reachable  
𝐺ᇱ = (𝑉ᇱ, 𝐸ᇱ) Subgraph if  

𝑉ᇱ ⊆ 𝑉, 𝐸ᇱ ⊆ 𝐸 
𝐺ᇱ Spanning Subgraph if 𝑉ᇱ = 𝑉 

Breadth-First Search 𝑂(𝑉 + 𝐸) 
Unwt Single-Source Shortest Path 
bfs(G, v) 
    for u in G.V – {v}: 
        u.d = ∞; u.color=WHITE 
    v.d = 0; v.color = GREY 
    Q = {v} // Uses a Queue. 
    while Q.size != 0 
        curr = Q.dequeue() 
        for u in G.adj[curr] 
            if u.color == WHITE 
                u.d = curr.d + 1 
                u.color = GREY 
                Q.enqueue(u) 
         curr.color = BLACK // done 
Θ(V + 1 + 𝑉 × 1 + 𝑑𝑒𝑔(𝑉) × 1) 

= Θ(𝑉 + 𝐸) 
Depth-First Search O(V+E) 

Not guaranteed shortest path. 
dfs(G) 
    t=0 
    for u in G.V: {u.c = WH; u.pi=-1} 
    for u in G.V:  
        if u.color = white {visit(G, u)} 
visit(G, v) 
    v.color=grey; t++;  v.disc=t 
    for u in G.adj[v] 
       if u.color = white: 
           u.pi = v 
           visit(G, u)} 

v.color=black; t++; v.fin = t

Directed Acyclic Graphs 
TopoSort: Linear ordering of 𝑉 s.t. 
if (𝑢, 𝑣) ∈ 𝐸 then u before v. 
All vertices with directed edges to 
v appear before v. 
Topo-sort(G) 𝑂(𝑉 + 𝐸) 
    Init empty linked list of vertices 
    Call DFS(G) 
    As each vertex finished, add to 
front of list 
    Return list of vertices in 
descending order of DFS finishing 
time. 

Prim’s Algorithm 
Finds MST of weighted, undirected 
graph using least-weight edges. 
Base Case: T if tree is spanning  
Recursive 𝑇 ∪ {(𝑢, 𝑣)} where (u,v) 
is the least-weight edge leaving T 
𝑂(𝑉 × 𝑇௫௧ି + 𝐸 × 𝑇ௗି௬) 

Array 𝑂(𝑉ଶ) 
Fibonacci Heap 𝑂(𝐸 + 𝑉 lg 𝑉) 
Binary Heap 𝑂(𝐸 + lg 𝑉)   
mst-prim(G, w, r) 
    for each v in V {v.k = ∞, v.𝜋=-1} 
    r.key = 0 
    Q = G.V 
    while Q.size() != 0 
        u = Q.remove-min() 
        for each v in G.adj[v] 
            if v in Q and q(u,v) < v.key 
                v.key = w(u,v) 
                // decrease the key 
                v. 𝜋 = u 
Kruskal’s Algorithm Greedy 𝐸 lg 𝐸 
Finds minimum spanning forest. If 
graph is connected, finds MST. 
Create graph with |V| forests. 
Add least-weighted edge 
connecting any two forests 
together. Terminate when T is 
connected. 
Uses a disjoint forest data 
structure. 
Make-set O(1) 
Find-set O(1) normally, O(lg n) 
Union(x, y) runs in almost O(1) 
mst-kruskal(G, w) Θ(𝐸 lg 𝐸) 
    𝑇 = {} 
   For 𝑣 ∈ 𝐺. 𝑉 { make-set(v) } 
   Sort 𝐺. 𝐸 in non-decreasing  
       order by weight 
   for (𝑢, 𝑣) ∈ 𝐺. 𝐸 (sorted) 
       if find-set(u) ≠ find-set(v) 
           𝑇 = 𝑇 ∪ {(𝑢, 𝑣)} 
           union(u,v) 
    return T 
 

Dijkstra’s Algorithm Greedy  
Single-Source Shortest Path 

Finds shortest path tree of 
weighted graph G with no 
negative weight edges. 

𝛩(𝑉 × 𝑇ି + 𝐸 × 𝑇ௗି௬) 
Array 𝑂(𝑉ଶ  +  𝐸 ∗ 1)  =  𝑂(𝑉ଶ) 
Binary Heap 𝑂(𝑉 𝑙𝑔 𝑉 +  𝐸 𝑙𝑔 𝑉) 
Fibonacci Heap 𝑂(𝐸 +  𝑉 𝑙𝑔 𝑉) 
Not guaranteed for graphs with 
negative weight edges, as it will 
not re-explore paths (via newly 
explored vertices). 
Let A=source, B, C. 
e(A,B)=5, e(A,C)=6, e(C,B)=-3 
(1) Set d(A)=0 as source 
(2) Set d(B)=5 d(B) > d(A) + w(A,B) 
(3) Set d(C)=6 d(C) > d(A) + w(A,B) 
->no check d(B)=d(C)+w(C,B)=3 
Dijkstra(G, weight, source): 
    Init-single-source(G, s) 
    Visited = {}; Q = G.V; 
    While Q.size != 0 
        u = Q.extract-min() 
        visited.add(u) 
        for 𝑣 ∈ G.adj[u] relax(u, v, w) 
init-single-source(G, s) 
    for 𝑣 ∈ G.V {v.d=∞, v.𝜋=NIL} 
    s.d = 0 
relax(u, v, w): 
    if v.d > u.d + w(u, v) 
        v.d = u.d + w(u,v); v.𝜋 = u 

Bellman Ford 
Single-Source Shortest Path in 
Weighted Directed Graph 
Bellman-Ford(G, w, s) 
    init-single-source(G, s) 
    // Relax each edge |V|-1 times 
    For (𝑢, 𝑣) ∈ 𝐺. 𝐸 
        If v.d > u.d + w(u,v) 
            return False 
            // Negative wt cycle 
    return True 

Floyd Warshall [Dynamic] 
All-Pairs Shortest Paths 𝑂(|𝑉|ଷ) 

Number vertices from 0..|V|-1 
Let 𝑠𝑝(𝑖, 𝑗, 𝑘) be the shortest path 
from 𝑖 → 𝑗 using k 
Floyd-warshall 
  N = W.rows            𝐷() = 𝑊  
  For k = 1..n 
    Let 𝐷() = (𝑑

()
) be nxn mat 

    For i=1..n { for j=1..n { 
     𝑑

()
= min (d୧୨

୩ିଵ, 𝑑
ିଵ + 𝑑

ିଵ 
    }} 
return 𝐷() – 𝑇(𝑛) ∈ Θ(𝑛ଷ) 
  



Greedy Problems 
Greedy problems exist when 
problem has optimal substructure 
and greedy choice property. 
Solve problems by making greedy 
(locally optimal) choice and solving 
only chosen sub-problem. 
Greedy Choice Pr Given problem, 
know which sub-problem’s 
solution will yield optimal solution 
without having to solve all other 
sub-problems 

Dynamic Programming 
Efficiency from avoiding re-

computing sub-problems 
May apply to problems with 
optimal substructure in which 
optimal solution can express as 
optimal solutions to subproblems. 
Bottom-Up Solve base case first 
Memoisation Solve top-down like 
recursive algo – worse constant fs 
𝐿𝐶𝑆(⟨⟩, 𝑆ଶ) = 𝐿𝐶𝑆(𝑆ଵ, ⟨⟩) = 0  
LCS(𝑆ଵ.X, 𝑆ଶ.X)= LCS(𝑆ଵ, 𝑆ଶ)+1 
LCS(𝑆ଵ.X, 𝑆ଶ.Y)=MAX( 
LCS(𝑆ଵ, 𝑆ଶ.Y), LCS(𝑆ଵ.X, 𝑆ଶ)), 𝑋 ≠ 𝑌 

Amortised - Aggregate Method 
Argue that a series of 𝑛 operations 
is completed in 𝑇(𝑛) – each 

operation has amortised cost ்
()


 . 

Amortised – Accounting Method 
Focus on data structure operation 
1 Calculate the actual cost 𝑐  of 
each type of operation 
2 Assign an amortised cost 𝑐పෝ  to 
each operation 
For any sequence of operations, 
amortised cost must be an upper 
bound on actual cost 

 𝑐పෝ



ୀଵ

≥  𝑐



ୀଵ

 

 Credit stored is difference 
between amortised cost and 
actual cost. 

Potential Method 
1 Determine the cost of each 
operation 
2 Define a potential function on 
data structure 
Amortised cost of an operation: 

𝑐పෝ = 𝑐 + ൫Φ(𝐷) − Φ(𝐷ିଵ)൯ 
For any sequence of operations, 
amortised cost must be an upper 
bound on actual cost. 
Amortised cost = sum of ci 
Obliged to show Φ(𝐷) ≥ Φ(𝐷) 
True if Φ(𝐷) = 0, Φ(𝐷) ≥ 0 
 
Push / Pop / Multipop 
Actual: 1, 1, min(|S|, k) 
ΔΦ 1, -1, -k’ 

Amortised: 2, 0, 0

Complexity Theory - Polynomial 
P: Class of problems that can be 
solved in polynomial time on a 
serial random-access machine. 
Same as the class of problems that 
can be solved in polynomial time 
on an abstract Turing machine, 
and the class of problems that can 
be solved in polynomial time on a 
parallel compute where the 
number of processors grow 
polynomially with input size. 
Closed under addition, 
multiplication, and composition: 
Addition: Run one polynomial 
time algorithm after another is still 
𝑂(𝑛) 
Multiplication: Run a polynomial 
time algorithm a polynomial 
number of times is still polynomial 
time 
Composition: Feeding the output 
of a polynomial time algorithm 
(which is at most polynomial in 
size) to another polynomial time 
algorithm is still polynomial. 
Alternatively, run a polynomial-
time algorithm on an input of 
polynomial size. 

Complexity Theory – NP 
Non-Deterministically Polynomial 
Set of concrete problems for 
which a solution (certificate) can 
be checked/verified in polynomial 
time. 
Problems for which we can’t even 
verify a solution in polynomial 
time are unlikely to have a 
polynomial time solution 
Trivially, we know that 𝑃 ⊂  𝑁𝑃 
NP Hard A concrete decision 
problem 𝐵 is NP-hard when every 
problem 𝐴 ∈ 𝑁𝑃 is polynomial-
time reducible to 𝐵 
NP Complete It is NP-H and its 
solution can be verified in 
polynomial time 

Complexity Theory – Classes  
Focus on concrete decision probs: 
Decision Output 1 or 0 as sol’n 
Optimisation problem usually 
have closely related decision 
problems. 
If the optimisation problem is 
easy, the related decision 
problem is also easy.  
Abstract: Problem that takes any 
input and maps to a solution. 
Binary relation as there may be 
multiple solutions for a given 
problem instance. 
Concrete: Problem that has set of 
binary strings as input. 
Encodings:  Translate abstract 
problems to concrete problems

Reductions 
Let X be a problem. If you can 
show that a known NP-Hard 
problem is reducible to X then X is 
NPH. 
Reduce HAM-CYCLE to TSP 
Hamiltonian Cycle: Simple path 
through unweighted graph 
containing very vertex, starting, 
and ending at the same vertex. 
Use TSP to solve HAM by set 
weight to 0 if edge exists, else 1. 
 
For a problem to be NP Hard, we 
must show that every problem in 
NP is polynomial-time reducible to 
B. 
To do this, we can show there 
exists a mapping between the 
inputs of a known NP-Hard 
problem and the problem X 
(Reduce Known NPH to X). 
 
 
For a problem to be NP-Complete, 
we must show that it is NP Hard, 
and that a certificate (solution) to 
the problem can be verified in 
polynomial time. 

 Master Method – added 
the final Θ(… ) answer. 

 Dynamic Programming – 
Check that using max or 
min in the right way – 
trying to max/min a 
particular value. 
 
Pseudocode – populate 
the base case first before 
computing the further 
cases 
 
Return a value 
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